73 research outputs found

    On the Complexity of Rainbow Vertex Colouring Diametral Path Graphs

    Get PDF
    Given a graph and a colouring of its vertices, a rainbow vertex path is a path between two vertices such that all the internal nodes of the path are coloured distinctly. A graph is rainbow vertex-connected if between every pair of vertices in the graph there exists a rainbow vertex path. We study the problem of deciding whether a given graph can be coloured using k or less colours such that it is rainbow vertex-connected. Note that every graph G needs at least diam(G)-1 colours to be rainbow vertex connected. Heggernes et al. [MFCS, 2018] conjectured that if G is a graph in which every induced subgraph has a dominating diametral path, then G can always be rainbow vertex coloured with diam(G)-1 many colours. In this work, we confirm their conjecture for chordal, bipartite and claw-free diametral path graphs. We complement these results by showing the conjecture does not hold if the condition on every induced subgraph is dropped. In fact we show that, in this case, even though diam(G) many colours are always enough, it is NP-complete to determine whether a graph with a dominating diametral path of length three can be rainbow vertex coloured with two colours

    On the maximum number of edges in planar graphs of bounded degree and matching number

    Get PDF
    We determine the maximum number of edges that a planar graph can have as a function of its maximum degree and matching number.publishedVersio

    Blocking Dominating Sets for H-Free Graphs via Edge Contractions

    Get PDF
    In this paper, we consider the following problem: given a connected graph G, can we reduce the domination number of G by one by using only one edge contraction? We show that the problem is NP-hard when restricted to {P6, P4 + P2}-free graphs and that it is coNP-hard when restricted to subcubic claw-free graphs and 2P3-free graphs. As a consequence, we are able to establish a complexity dichotomy for the problem on H-free graphs when H is connected

    bb-Coloring Parameterized by Pathwidth is XNLP-complete

    Full text link
    We show that the bb-Coloring problem is complete for the class XNLP when parameterized by the pathwidth of the input graph. Besides determining the precise parameterized complexity of this problem, this implies that b-Coloring parameterized by pathwidth is W[t]W[t]-hard for all tt, and resolves the parameterized complexity of bb-Coloring parameterized by treewidth

    b-Coloring Parameterized by Clique-Width

    Get PDF
    We provide a polynomial-time algorithm for b-Coloring on graphs of constant clique-width. This unifies and extends nearly all previously known polynomial-time results on graph classes, and answers open questions posed by Campos and Silva [Algorithmica, 2018] and Bonomo et al. [Graphs Combin., 2009]. This constitutes the first result concerning structural parameterizations of this problem. We show that the problem is FPT when parameterized by the vertex cover number on general graphs, and on chordal graphs when parameterized by the number of colors. Additionally, we observe that our algorithm for graphs of bounded clique-width can be adapted to solve the Fall Coloring problem within the same runtime bound. The running times of the clique-width based algorithms for b-Coloring and Fall Coloring are tight under the Exponential Time Hypothesis

    Structural Parameterizations of Clique Coloring

    Get PDF
    A clique coloring of a graph is an assignment of colors to its vertices such that no maximal clique is monochromatic. We initiate the study of structural parameterizations of the Clique Coloring problem which asks whether a given graph has a clique coloring with q colors. For fixed q ? 2, we give an ?^?(q^{tw})-time algorithm when the input graph is given together with one of its tree decompositions of width tw. We complement this result with a matching lower bound under the Strong Exponential Time Hypothesis. We furthermore show that (when the number of colors is unbounded) Clique Coloring is XP parameterized by clique-width

    Reducing Graph Transversals via Edge Contractions

    Get PDF
    For a graph parameter ?, the Contraction(?) problem consists in, given a graph G and two positive integers k,d, deciding whether one can contract at most k edges of G to obtain a graph in which ? has dropped by at least d. Galby et al. [ISAAC 2019, MFCS 2019] recently studied the case where ? is the size of a minimum dominating set. We focus on graph parameters defined as the minimum size of a vertex set that hits all the occurrences of graphs in a collection ? according to a fixed containment relation. We prove co-NP-hardness results under some assumptions on the graphs in ?, which in particular imply that Contraction(?) is co-NP-hard even for fixed k = d = 1 when ? is the size of a minimum feedback vertex set or an odd cycle transversal. In sharp contrast, we show that when ? is the size of a minimum vertex cover, the problem is in XP parameterized by d
    • …
    corecore